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Computation of moving boundaries and interfaces
and stabilization parameters
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SUMMARY

The interface-tracking and interface-capturing techniques we developed in recent years for computation
of �ow problems with moving boundaries and interfaces rely on stabilized formulations such as the
streamline-upwind=Petrov–Galerkin (SUPG) and pressure-stabilizing=Petrov–Galerkin (PSPG) methods.
The interface-tracking techniques are based on the deforming-spatial-domain=stabilized space–time for-
mulation, where the mesh moves to track the interface. The interface-capturing techniques, typically
used with non-moving meshes, are based on a stabilized semi-discrete formulation of the Navier–Stokes
equations, combined with a stabilized formulation of the advection equation governing the time-evolution
of an interface function marking the interface location. We provide an overview of the interface-tracking
and interface-capturing techniques, and highlight how we determine the stabilization parameters used in
the stabilized formulations. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: moving boundaries and interfaces; SUPG and PSPG formulations; stabilization
parameters

1. INTRODUCTION

The �nite element techniques we have developed in recent years for computation of �ow
problems with moving boundaries and interfaces (such as free-surface and two-�uid inter-
face �ows, �uid–particle and �uid–structure interactions, and �ows with moving mechanical
components) can be categorized into interface-tracking and interface-capturing techniques (see
References [1–3]). Depending on the complexity of the interface and other aspects of the prob-
lem, we can use one class of techniques or the other, or both in some cases, as it was pointed
out in References [1–3]. An interface-tracking technique requires meshes that ‘track’ the in-
terfaces. The mesh needs to be updated as the �ow evolves. In interface-capturing techniques,
such as one designed for two-�uid �ows, the computations are based on spatial domains that
are typically not moving or deforming. An interface function, marking the location of the
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interface, needs to be computed to ‘capture’ the interface over the non-moving mesh. The
interface is captured within the resolution of the �nite element mesh covering the area where
the interface is. This approach can be seen as a special case of interface representation tech-
niques, where the interface is somehow represented over a non-moving �uid mesh, the main
point being that the �uid mesh does not move to ‘track’ the interfaces. A consequence of
the mesh not moving to ‘track’ the interface is that for �uid–solid interfaces, independent of
how well the interface geometry is represented, the resolution of the boundary layer will be
limited by the resolution of the �uid mesh where the interface is.

The deforming-spatial-domain=stabilized space–time (DSD=SST) formulation [4], developed
for moving boundaries and interfaces, is an interface-tracking technique, where the �nite
element formulation of the problem is written over its space–time domain. At each time step
the locations of the interfaces are calculated as part of the overall solution. As the spatial
domain occupied by the �uid changes its shape in time, mesh needs to be updated. In general,
this is accomplished by moving the mesh with the motion of the nodes governed by the
equations of elasticity, and full or partial remeshing (i.e., generating a new set of elements,
and sometimes also a new set of nodes) as needed.

In computation of two �uid-�ows with interface-tracking techniques, sometimes the inter-
face might be too complex or unsteady to track while keeping the frequency of remeshing
at an acceptable level. Not being able to reduce the frequency of remeshing in 3D might
introduce overwhelming mesh generation and projection costs, making the computations with
the interface-tracking technique no longer feasible. In such cases, interface-capturing tech-
niques, which do not normally require costly mesh update steps, could be used with the
understanding that the interface will not be represented as accurately as we would have with
an interface-tracking technique. In other words, for comparable levels of spatial discretization,
interface-capturing techniques yield less accurate representation of the interface. However,
these techniques can be used as practical alternatives in carrying out the simulations when
compromising the accurate representation of the interfaces becomes less of a concern than
facing major di�culties in updating the mesh to track such interfaces. To increase the ac-
curacy of an interface-capturing technique without adding a major computational cost, we
developed the enhanced-discretization interface-capturing technique (EDICT), �rst introduced
in Reference [5]. How EDICT can be used in several other contexts, such as shock-capturing
in compressible �ows or sub-time-stepping in �uid-structure interactions, is highlighted in Ref-
erences [1–3]. Methods developed to increase the scope and accuracy of the interface-tracking
and interface-capturing techniques are also highlighted in References [1–3].

Our interface-tracking and interface-capturing techniques are based on the streamline-up-
wind=Petrov–Galerkin (SUPG) [6, 7], Galerkin=least-squares (GLS) [8], and pressure-stabili-
zing=Petrov–Galerkin (PSPG) [4] formulations. In the interface-capturing techniques,
stabilized semi-discrete formulations are used for both the Navier–Stokes equations of in-
compressible �ows and the advection equation governing the time-evolution of an interface
function marking the interface location. These stabilization techniques prevent numerical os-
cillations and other instabilities in solving problems with advection-dominated �ows and when
using equal-order interpolation functions for velocity and pressure. Furthermore, this class of
stabilized formulations substantially improve the convergence rate in iterative solution of the
large, coupled nonlinear equation system that needs to be solved at every time step of a �ow
computation. Such nonlinear systems are typically solved with the Newton–Raphson method,
which involves, at its every iteration step, solution of a large, coupled linear equation system.
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MOVING BOUNDARIES AND INTERFACES 557

In iterative solution of such linear equation systems using a good stabilized method makes
substantial di�erence in convergence, as it was pointed out in Reference [9].

The SUPG, GLS and PSPG formulations stabilize the method without introducing excessive
numerical dissipation. In these formulations, judicious selection of the stabilization parameter,
which is almost always known as ‘�’, plays an important role in determining the accuracy
of the formulation. This stabilization parameter involves a measure of the local length scale
(also known as ‘element length’) and other parameters such as the local Reynolds and Courant
numbers. Various ‘element length’s and ‘�’s were proposed starting with those in References
[7, 10], followed by the one introduced in Reference [11], and those proposed in the subse-
quently reported SUPG, GLS and PSPG methods. A number of ‘�’s, dependent upon spatial
and temporal discretizations, were introduced and tested in Reference [12]. More recently,
‘�’s which are applicable to higher-order elements were proposed in Reference [13].

Ways to calculate ‘�’s from the element-level matrices and vectors were �rst introduced in
Reference [14]. These new de�nitions are expressed in terms of the ratios of the norms of
the relevant matrices or vectors. They automatically take into account the local length scales,
advection �eld and the element-level Reynolds number. Based on these de�nitions, a ‘�’ can
be calculated for each element, or even for each element node or degree of freedom or element
equation. Certain variations and complements of these new ‘�’s were introduced in References
[15, 3]. In this paper, we describe the element–matrix-based and element–vector-based ‘�’s
designed for the semi-discrete and space–time formulations of the advection–di�usion and
Navier–Stokes equations. We also describe approximate versions of these ‘�’s, which are
based on the local length scales for the advection- and di�usion-dominated limits.

2. GOVERNING EQUATIONS

Let �t ⊂Rnsd be the spatial �uid mechanics domain with boundary �t at time t ∈ (0; T ), where
the subscript t indicates the time-dependence of the spatial domain. The Navier–Stokes equa-
tions of incompressible �ows can be written on �t and ∀t ∈ (0; T ) as

�
(
@u
@t

+ u ·Bu − f
)
−B · �= 0 (1)

B · u= 0 (2)

where �; u and f are the density, velocity and the external force, respectively. The stress
tensor � is de�ned as

�(p; u) = − pI+ 2�U(u) (3)

Here p is the pressure, I is the identity tensor, �=�� is the viscosity, � is the kinematic
viscosity, and U(u) is the strain-rate tensor:

U(u) =
1
2

((Bu) + (Bu)T) (4)

The essential and natural boundary conditions for Equation (1) are represented as

u= g on (�t)g; n · �= h on (�t)h (5)
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where (�t)g and (�t)h are complementary subsets of the boundary �t ; n is the unit normal
vector, and g and h are given functions. A divergence-free velocity �eld u0(x) is speci�ed as
the initial condition.

If the problem does not involve any moving boundaries or interfaces, the spatial domain
does not need to change with respect to time, and the subscript t can be dropped from �t and
�t . This might be the case even for �ows with moving boundaries and interfaces, if in the
formulation used the spatial domain is not de�ned to be the part of the space occupied by the
�uid(s). For example, we can have a �xed spatial domain, and model the �uid–�uid interfaces
by assuming that the domain is occupied by two immiscible �uids, A and B, with densities
�A and �B and viscosities �A and �B. In modelling a free-surface problem where �uid B is
irrelevant, we assign a su�ciently low density to �uid B. An interface function � serves as a
marker identifying �uids A and B with the de�nition �= {1 for �uid A and 0 for �uid B}.
The interface between the two �uids is approximated to be at �= 0:5. In this context, � and
� are de�ned as

�=��A + (1 − �)�B; �=��A + (1 − �)�B (6)

The evolution of the interface function �, and therefore the motion of the interface, is governed
by a time-dependent advection equation, written on � and ∀t ∈ (0; T ) as

@�
@t

+ u ·B�= 0 (7)

3. STABILIZED FORMULATIONS AND STABILIZATION PARAMETERS

3.1. Advection–Di�usion equation

Let us consider over a domain � with boundary � the following time-dependent advection–
di�usion equation, written on � and ∀t ∈ (0; T ) as

@�
@t

+ u ·B�−B · (�B�) = 0 (8)

where � represents the quantity being transported (e.g. temperature, concentration, interface
function), and � is the di�usivity. The essential and natural boundary conditions associated
with Equation (8) are represented as

�= g on �g; n · �B�= h on �h (9)

A function �0(x) is speci�ed as the initial condition.
Let us assume that we have constructed some suitably de�ned �nite-dimensional trial solu-

tion and test function spaces Sh
� and Vh

� . The stabilized �nite element formulation of Equation
(8) can then be written as follows: �nd �h ∈Sh

� such that ∀wh ∈Vh
� :

∫
�
wh
(
@�h

@t
+ uh ·B�h

)
d� +

∫
�
Bwh · �B�h d� −

∫
�h

whhh d�

+
nel∑
e=1

∫
�e
�SUPGuh ·Bwh

(
@�h

@t
+ uh ·B�h −B · (�B�h)

)
d� = 0 (10)
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Here nel is the number of elements, �e is the domain for element e, and �SUPG is the SUPG
stabilization parameter.

Let us use the notation b :
∫

�e(: : :) d� : bV to denote the element-level matrix b and element-
level vector bV corresponding to the element-level integration term

∫
�e(: : :) d�. We now de�ne

the following element-level matrices and vectors:

m:
∫

�e
wh
@�h

@t
d� :mV (11)

c:
∫

�e
whuh ·B�h d� : cV (12)

k:
∫

�e
Bwh · �B�h d� :kV (13)

k̃:
∫

�e
uh ·Bwhuh ·B�h d� : k̃V (14)

c̃:
∫

�e
uh ·Bwh @�

h

@t
d� : c̃V (15)

We de�ne the element-level Reynolds and Courant numbers as follows:

Re=
‖uh‖2

�
‖c‖
‖k̃‖ (16)

Cru =
�t
2

‖c‖
‖m‖ (17)

Cr� =
�t
2

‖k‖
‖m‖ (18)

Cr�̃ =
�t
2
�SUPG

‖k̃‖
‖m‖ (19)

where ‖b‖ is the norm of matrix b.
The components of element–matrix-based �SUPG are de�ned as follows:

�S1 =
‖c‖
‖k̃‖ (20)

�S2 =
�t
2

‖c‖
‖c̃‖ (21)

�S3 = �S1 Re=

(
‖c‖
‖k̃‖

)
Re (22)
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To construct �SUPG from its components we propose the form

�SUPG =
(

1
�rS1

+
1
�rS2

+
1
�rS3

)−1=r

(23)

which is based on the inverse of �SUPG being de�ned as the r-norm of the vector with
components 1=�S1; 1=�S2 and 1=�S3. We note that the higher the integer r is, the sharper the
switching between �S1; �S2 and �S3 becomes.

The components of the element–vector-based �SUPG are de�ned as follows:

�SV1 =
‖cV‖
‖k̃V‖

(24)

�SV2 =
‖cV‖
‖c̃V‖ (25)

�SV3 = �SV1Re=

(
‖cV‖
‖k̃V‖

)
Re (26)

With these three components,

(�SUPG)V =
(

1
�rSV1

+
1
�rSV2

+
1
�rSV3

)−1=r

(27)

Remark 1
The de�nition of �SUPG given by Equation (27) can be seen as a non-linear de�nition because
it depends on the solution. However, in marching from time level n to n + 1 the element
vectors can be evaluated at level n. This might be preferable in some cases, as it spares us
from ending up with a non-linear semi-discrete equation system.

3.2. Navier–Stokes Equations of Incompressible Flows

Given Equations (1)–(2), let us assume that we have some suitably de�ned �nite-dimensional
trial solution and test function spaces for velocity and pressure: Sh

u ; Vh
u ; Sh

p and Vh
p =Sh

p .
The stabilized �nite element formulation of Equations (1)–(2) can then be written as follows:
�nd uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u and qh ∈Vh
p :

∫
�
wh ·�

(
@uh

@t
+ uh ·Buh − f

)
d� +

∫
�
U(wh) : �(ph; uh) d� −

∫
�h

wh · hh d�

+
∫

�
qhB · uh d� +

nel∑
e=1

∫
�e

1
�

[�SUPG�uh · ∇wh + �PSPG∇qh] ·
[
�
(
@uh

@t
+ uh ·Buh

)
−B · �(ph; uh) − �f

]
d�

+
nel∑
e=1

∫
�e
�LSICB ·wh�B · uh d� = 0 (28)
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MOVING BOUNDARIES AND INTERFACES 561

Here �PSPG and �LSIC are the PSPG and LSIC (least-squares on incompressibility constraint)
stabilization parameters.

We now de�ne the following element-level matrices and vectors:

m:
∫

�e
wh ·� @u

h

@t
d� :mV (29)

c:
∫

�e
wh ·�(uh ·Buh) d� : cV (30)

k:
∫

�e
U(wh) : 2�U(uh) d� :kV (31)

g:
∫

�e
(B ·wh)ph d� : gV (32)

gT:
∫

�e
qh(B · uh) d� : gT

V (33)

k̃:
∫

�e
(uh ·Bwh) ·�(uh ·Buh) d� : k̃V (34)

c̃:
∫

�e
(uh ·Bwh) ·� @u

h

@t
d� : c̃V (35)

S̃:
∫

�e
(uh ·Bwh) ·Bph d� : S̃V (36)

R:
∫

�e
Bqh · @u

h

@t
d� : RV (37)

S:
∫

�e
Bqh · (uh ·Buh) d� : SV (38)

X:
∫

�e
Bqh ·Bph d� : XV (39)

e:
∫

�e
(B ·wh)�(B · uh) d� : eV (40)

Remark 2
In the de�nition of the element-level matrices listed above, we assume that uh appearing in
the advective operator (i.e. in uh ·Buh and uh ·Bwh) is evaluated at time level n rather than
n + 1. The de�nition would essentially be the same if we, alternatively, assumed that it is
evaluated at time level n+ 1 but non-linear iteration level i rather than i + 1. Except, in the
�rst option, in the advective operator we use (uh)n, whereas in the second option we use
(uh)in+1. The second option can be seen as a non-linear de�nition. The �rst option might be
preferable in some cases, as it spares us from another level of nonlinearity coming from the
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562 T. E. TEZDUYAR

way � is de�ned. In the de�nition of the element-level-vectors, we face the same choices in
terms of the evaluation of uh in the advective operator.

The element-level Reynolds and Courant numbers are de�ned the same way as they were
de�ned before, as given by Equations (16)–(19). The components of the element–matrix-
based �SUPG are de�ned the same way as they were de�ned before, as given by Equations
(20)–(22). �SUPG is constructed from its components the same way as it was constructed
before, as give by Equation (23). The components of the element–vector-based �SUPG are
de�ned the same way as they were de�ned before, as given by Equations (24)–(26). The
construction of (�SUPG)V is also the same as it was before, given by Equation (27).

The components of the element–matrix-based �PSPG are de�ned as follows:

�P1 =
‖gT‖
‖S‖ (41)

�P2 =
�t
2

‖gT‖
‖R‖ (42)

�P3 = �P1 Re=
(‖gT‖

‖S‖
)
Re (43)

�PSPG is constructed from its components as follows:

�PSPG =
(

1
�rP1

+
1
�rP2

+
1
�rP3

)−1=r

(44)

The components of the element–vector-based �PSPG are de�ned as follows:

�PV1 = �P1 (45)

�PV2 = �PV1
‖SV‖
‖RV‖ (46)

�PV3 = �PV1 Re (47)

With these components,

(�PSPG)V =
(

1
�rPV1

+
1
�rPV2

+
1
�rPV3

)−1=r

(48)

The element–matrix-based �LSIC is de�ned as follows:

�LSIC =
‖c‖
‖e‖ (49)

We de�ne the element–vector-based �LSIC as

(�LSIC)V = �LSIC (50)
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Remark 3
We can also calculate a separate � for each element node, or degree of freedom, or element
equation. In that case, each component of � would be calculated separately for each element
node, or degree of freedom, or element equation. For this, we �rst represent an element matrix
b in terms of its row matrices: b1; b2; : : : ; bnex and an element vector bV in terms of it subvec-
tors: (bV)1; (bV)2; : : : ; (bV)nex . If we want a separate � for each element node, then b1; b2; : : : ; bnex

and (bV)1; (bV)2; : : : ; (bV)nex would be the row matrices and subvectors corresponding to each
element node, with nex = nen, where nen is the number of element nodes. If we want a sepa-
rate � for each degree of freedom, then b1; b2; : : : ; bnex and (bV)1; (bV)2; : : : ; (bV)nex would be
the row matrices and subvectors corresponding to each degree of freedom, with nex = ndof ,
where ndof is the number of degrees of freedom. If we want a separate � for each element
equation, then b1; b2; : : : ; bnex and (bV)1; (bV)2; : : : ; (bV)nex would be the row matrices and sub-
vectors corresponding to each element equation, with nex = nee, where nee is the number of
element equations. Based on this, the components of � would be calculated using the norms
of these row matrices or subvectors, instead of the element matrices or vectors. For example,
a separate �S1 or �SV1 for each element node would be calculated by using the expression

(�S1)a =
‖ca‖
‖k̃a‖

; a= 1; 2; : : : ; nen (51)

or

(�SV1)a =
‖(cV)a‖
‖(̃kV)a‖

; a= 1; 2; : : : ; nen (52)

Remark 4
The concept of calculating a separate � for each element node or equation can be extended to
calculating a separate � for each global node or equation. This can be accomplished by �rst
representing a global matrix or vector in terms of its row matrices or subvectors associated
with the global nodes or equations, and then by calculating the components of � using the
norms of these global row matrices or subvectors. With this approach, applying the class of
stabilization techniques described in this paper to element-free methods would become more
direct.

For the purpose of comparison, we de�ne here also the stabilization parameters that are
based on an earlier de�nition of the length scale h [11]:

hUGN = 2‖uh‖
(

nen∑
a=1

|uh ·BNa|
)−1

(53)

where Na is the interpolation function associated with node a. The stabilization parameters
are de�ned as follows:

�SUGN1 =
hUGN

2‖uh‖ (54)

�SUGN2 =
�t
2

(55)
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564 T. E. TEZDUYAR

�SUGN3 =
h2

UGN

4�
(56)

(�SUPG)UGN =
(

1
�2

SUGN1
+

1
�2

SUGN2
+

1
�2

SUGN3

)−1=2

(57)

(�PSPG)UGN = (�SUPG)UGN (58)

(�LSIC)UGN =
hUGN

2
‖uh‖z (59)

Here z is given as follows:

z=

{
(ReUGN

3 ) ReUGN63

1 ReUGN¿3
(60)

where ReUGN = ‖uh‖hUGN=2�.
Comparisons between the performances of these earlier stabilization parameters and the

ones proposed here can be found in Reference [14]. These comparisons show that, especially
for special element geometries, the performances are similar.

Remark 5
The expression for �SUGN1 can be written more directly as

�SUGN1 =
(

nen∑
a=1

|uh ·BNa|
)−1

(61)

and based on that, the expression for hUGN can be written as

hUGN = 2‖uh‖�SUGN1 (62)

A rationale for �SUGN1 given by Equation (61) can be provided based on Remark 3 and
Equation (52). For that, we apply Equation (52) to the advection–di�usion equation

(�SV1)a =
∣∣∣∣
∫

�e
Na(uh ·B�h) d�

∣∣∣∣
/∣∣∣∣
∫

�e
(uh ·BNa)(uh ·B�h) d�

∣∣∣∣ (63)

Assuming one-point integration, we can write

(�SV1)a =
|Na|

|uh ·BNa| (64)

Let us de�ne �SUGN1 to be the weighted average (weighted with |uh ·BNa|) of these nodal
�SV1 values:

�SUGN1 =
(

nen∑
a=1

|uh ·BNa|
)−1 nen∑

a=1
|Na| (65)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:555–575



MOVING BOUNDARIES AND INTERFACES 565

For linear, bilinear and trilinear elements |Na|=Na and therefore
∑nen

a=1 |Na|= 1. Consequently:

�SUGN1 =
(

nen∑
a=1

|uh ·BNa|
)−1

(66)

As a potential alternative or complement to the LSIC stabilization, we propose the Disconti-
nuity-Capturing Directional Dissipation (DCDD) stabilization. In describing the DCDD stabi-
lization, we �rst de�ne the unit vectors s and r:

s=
uh

‖uh‖ ; r=
B‖uh‖

‖B‖uh‖ ‖ (67)

and the element-level matrices and vectors cr ; k̃r ; (cr)V, and (̃kr)V:

cr:
∫

�e
wh ·�(r ·Buh) d� : (cr)V (68)

k̃r:
∫

�e
(r ·Bwh) ·�(r ·Buh) d� : (̃kr)V (69)

Then the DCDD stabilization is de�ned as

SDCDD =
nel∑
e=1

∫
�e
��DCDDBwh : ([rr− (r · s)2ss] ·Buh) d� (70)

where the element–matrix-based and element–vector-based DCDD viscosities are

�DCDD = |r · uh| ‖cr‖
‖k̃r‖

(71)

(�DCDD)V = |r · uh| ‖(cr)V‖
‖(̃kr)V‖

(72)

An approximate version of the expression given by Equation (71) can be written as

�DCDD = |r · uh| hRGN

2
(73)

where

hRGN = 2
(

nen∑
a=1

|r ·BNa|
)−1

(74)

A di�erent way of determining �DCDD can be expressed as

�DCDD = �DCDD‖uh‖2 (75)
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where

�DCDD =
hDCDD

2‖U‖
‖B‖uh‖ ‖hDCDD

‖U‖ (76)

Here U represents a global velocity scale, and hDCDD can be calculated by using the expression

hDCDD = 2
‖cr‖
‖k̃r‖

(77)

or the approximation

hDCDD = hRGN (78)

Combining Equations (75) and (76), we obtain

�DCDD =
1
2

(‖uh‖
‖U‖

)2

(hDCDD)2‖B‖uh‖ ‖ (79)

It was shown by Mittal [16] that �ow computations with the SUPG and PSPG formulations
(based on stabilization parameters very much like those given by Equations (53)–(60)) and
very high aspect-ratio elements in the boundary layers might in some cases exhibit conver-
gence problems and inaccuracies. As a remedy, Mittal [16] proposed to use an element length
de�nition that represents the ‘minimum dimension’ of an element and gives the minimum
edge length in the special case of a rectangular element.

In Reference [3], we proposed to re-de�ne �PSPG by modifying the de�nitions of �P3 and �PV3

given by Equations (43) and (47). We proposed to accomplish that by using the expressions

�P3 = �P1
‖c‖
�‖k̃r‖

; �PV3 = �PV1
‖c‖
�‖k̃r‖

(80)

or the approximations

�P3 = �P1 Re
(
hRGN

hUGN

)2

; �PV3 = �PV1 Re
(
hRGN

hUGN

)2

(81)

In Reference [3], we further stated that these modi�cations can also be applied to �S3 and
�SV3 given by Equations (22) and (26). Here we write that explicitly

�S3 = �S1
‖c‖
�‖k̃r‖

; �SV3 = �SV1
‖c‖
�‖k̃r‖

(82)

�S3 = �S1 Re
(
hRGN

hUGN

)2

; �SV3 = �SV1 Re
(
hRGN

hUGN

)2

(83)

However, if we are dealing with just an advection–di�usion equation, rather than the Navier–
Stokes equations of incompressible �ows, then the de�nition of the unit vector r changes as

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:555–575



MOVING BOUNDARIES AND INTERFACES 567

follows:

r=
B|�h|

‖B|�h| ‖ (84)

We also propose to re-de�ne �SUGN3 given by Equation (56) as follows:

�SUGN3 =
h2

RGN

4�
(85)

Furthermore, we propose to replace (�LSIC)UGN given by Equation (59) as follows:

(�LSIC)UGN = (�SUPG)UGN‖uh‖2 (86)

Remark 6
The ‘element length’s hUGN (given by Equation (53)) and hRGN (Equation (74)) can be
viewed as the local length scales corresponding to the advection- and di�usion-dominated
limits, respectively.

4. DSD=SST FINITE ELEMENT FORMULATION

In the DSD=SST method, the �nite element formulation of the governing equations is writ-
ten over a sequence of N space–time slabs Qn, where Qn is the slice of the space–time
domain between the time levels tn and tn+1. At each time step, the integrations involved
in the �nite element formulation are performed over Qn. The space–time �nite element in-
terpolation functions are continuous within a space–time slab, but discontinuous from one
space–time slab to another. Typically we use �rst-order polynomials as interpolation func-
tions. The notation (·)−n and (·)+

n denotes the function values at tn as approached from be-
low and above respectively. Each Qn is decomposed into space–time elements Qen , where
e= 1; 2; : : : ; (nel)n. The subscript n used with nel is to account for the general case in which
the number of space–time elements may change from one space–time slab to another. The
Dirichlet- and Neumann-type boundary conditions are enforced over (Pn)g and (Pn)h, the
complementary subsets of the lateral boundary of the space–time slab. The �nite element trial
function spaces (Sh

u )n for velocity and (Sh
p )n for pressure, and the test function spaces (Vh

u )n
and (Vh

p )n = (Sh
p )n are de�ned by using, over Qn, �rst-order polynomials in both space and

time.
The DSD=SST formulation is written as follows: given (uh)−n , �nd uh ∈ (Sh

u )n and ph ∈
(Sh
p )n such that ∀wh ∈ (Vh

u )n and qh ∈ (Vh
p )n:

∫
Qn
wh ·�

(
@uh

@t
+ uh ·Buh − fh

)
dQ +

∫
Qn
U(wh) : �(ph; uh) dQ

−
∫

(Pn)h

wh · hh dP +
∫
Qn
qhB · uh dQ +

∫
�n

(wh)+
n ·�((uh)+

n − (uh)−n ) d�
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+
(nel)n∑
e=1

∫
Qen

�LSME

�
 L(qh;wh) · [ L(ph; uh) − �fh] dQ

+
nel∑
e=1

∫
Qen

�LSICB ·wh�B · uh dQ= 0 (87)

where

 L(qh;wh) =�
(
@wh

@t
+ uh ·Bwh

)
−B · �(qh;wh) (88)

and �LSME and �LSIC are the stabilization parameters (see Reference [17]). This formulation is
applied to all space–time slabs Q0; Q1; Q2; : : : ; QN−1, starting with (uh)−0 = u0. For an earlier,
detailed reference on this stabilized formulation see Reference [4].

Remark 7 (Space-time extension of the � calculations described in Section 3)
Let us write a DSD=SST formulation that is slightly di�erent than the one given by Equation
(87). We do that by neglecting the (�LSME=�)B · (2�U(wh)) term and replacing �LSME with
�SUPG and �PSPG:

∫
Qn
wh ·�

(
@uh

@t
+ uh ·Buh − fh

)
dQ +

∫
Qn
U(wh) : �(ph; uh) dQ

−
∫

(Pn)h

wh · hh dP +
∫
Qn
qhB · uh dQ +

∫
�n

(wh)+
n ·�((uh)+

n − (uh)−n ) d�

+
(nel)n∑
e=1

∫
Qen

1
�

[
�SUPG�

(
@wh

@t
+ uh · ∇wh

)
+ �PSPG∇qh

]
· [ L(ph; uh) − �fh] dQ

+
nel∑
e=1

∫
Qen

�LSICB ·wh�B · uh dQ= 0 (89)

For extensions of the � calculations based on matrix norms, we de�ne the space–time
augmented versions of the element-level matrices and vectors given by Equations (30), (34),
and (38):

cA:
∫
Qen

wh ·�
(
@uh

@t
+ uh ·Buh

)
dQ : (cA)V (90)

k̃A:
∫
Qen

(
@wh

@t
+ uh ·Bwh

)
·�
(
@uh

@t
+ uh ·Buh

)
dQ : (̃kA)V (91)

SA:
∫
Qen

Bqh ·
(
@uh

@t
+ uh ·Buh

)
dQ : (SA)V (92)
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The components of element–matrix-based �SUPG are de�ned as follows:

�S12 =
‖cA‖
‖k̃A‖

(93)

�S3 = �S12
‖cA‖
�‖k̃r‖

(94)

where k̃r is the space–time version (i.e. integrated over the space–time element domain Qen)
of the element-level matrix given by Equation (69). To construct �SUPG from its components
we propose the form

�SUPG =
(

1
�rS12

+
1
�rS3

)−1=r

(95)

The components of the element–vector-based �SUPG are de�ned as follows:

�SV12 =
‖(cA)V‖
‖(̃kA)V‖

(96)

�SV3 = �SV12
‖cA‖
�‖k̃r‖

(97)

From these two components,

(�SUPG)V =
(

1
�rSV12

+
1
�rSV3

)−1=r

(98)

The components of element–matrix-based �PSPG are de�ned as follows:

�P12 =
‖gT‖
‖SA‖ (99)

�P3 = �P12
‖cA‖
�‖k̃r‖

(100)

where gT is the space–time version of the element-level matrix given by Equation (33). To
construct �PSPG from its components we propose the form

�PSPG =
(

1
�rP12

+
1
�rP3

)−1=r

(101)

The components of the element–vector-based �PSPG are de�ned as follows:

�PV12 =
‖gT

V‖
‖(SA)V‖ (102)

�PV3 = �PV12
‖cA‖
�‖k̃r‖

(103)
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Figure 1. 2D Advection skew to mesh. Problem set up.

From these components,

(�PSPG)V =
(

1
�rPV12

+
1
�rPV3

)−1=r

(104)

The element–matrix-based �LSIC is de�ned as

�LSIC =
‖cA‖
‖e‖ (105)

where e is the space–time version of the element-level matrix given by Equation (40).
The element–vector-based �LSIC is de�ned as

(�LSIC)V = �LSIC (106)

The space–time versions of �SUGN1; �SUGN2; �SUGN3; (�SUPG)UGN; (�PSPG)UGN, and (�LSIC)UGN,
given respectively by Equations (54), (55), (85), (57), (58), and (86), are de�ned as follows:

�SUGN12 =
(

nen∑
a=1

∣∣∣∣@Na@t + uh ·BNa
∣∣∣∣
)−1

(107)

�SUGN3 =
h2

RGN

4�
(108)

(�SUPG)UGN =
(

1
�2

SUGN13
+

1
�2

SUGN3

)−1=2

(109)

(�PSPG)UGN = (�SUPG)UGN (110)

(�LSIC)UGN = (�SUPG)UGN‖uh‖2 (111)

Here, nen is the number of nodes for the space–time element, and Na is the space–time
interpolation function associated with node a.
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Figure 2. 2D advection skew to mesh. Solution along x= 0:5, obtained with three di�erent stabilization
parameters, compared to the exact solution.

Figure 3. 2D Incompressible �ow past a cylinder. Mesh near cylinder.
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Figure 4. 2D incompressible �ow past a cylinder. Time history of the drag
(upper) and lift (lower) coe�cients.

5. TEST COMPUTATIONS

5.1. 2D Advection skew to mesh

Here we compare the performance of some of the stabilization parameters for a 2D advection–
di�usion problem with negligible di�usivity and with advection skew to the mesh.
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Figure 5. 2D incompressible �ow past a cylinder. Stabilization parameters:
�SUPG (upper) and �PSPG (lower).

Figure 1 shows the problem set up. The advection direction is 30◦ from the x-axis. The
domain is square, the mesh is uniform with 20× 20 square elements, and ‖uh‖�t=�x= 2:0.
The stabilization parameters tested are: (�SUPG)UGN (given by Equation (57)), �SUPG (Equa-
tion (23)), and (�SUPG)V (Equation (27)). Figure 2 shows the solution along x= 0:5. The
exact solution is for the pure advection case. We observe that the solutions obtained with the
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stabilization parameters tested are almost identical. For more details on this test computation,
see Reference [14].

5.2. 2D Incompressible �ow past a cylinder

In this case we compare the stabilization parameters in computation of 2D incompressible
�ow past a cylinder at Re= 100. The mesh near the cylinder is shown in Figure 3. In this
computation U∞�t=R= 0:1, where U∞ is the free-stream velocity and R is the cylinder radius.
Figure 4 shows, at later stages of the computation, time history of the drag and lift coe�cients.
For (�)UGN; �, and (�)V, respectively, the average drag coe�cient is 1.422, 1.421, and 1.417,
and the average Strouhal number is 0.167, 0.169, and 0.168. Here (�)UGN represents the group
of stabilization parameters (�SUPG)UGN (given by Equation (57)), (�PSPG)UGN (Equation (58)),
and (�LSIC)UGN (Equation (59)); � represents �SUPG (Equation (23)), �PSPG (Equation (44)),
and �LSIC (Equation (49)); and (�)V represents (�SUPG)V (Equation (27)), (�PSPG)V (Equation
(48)), and (�LSIC)V (Equation (50)). Figure 5 shows the values of the stabilization parameters
along the vertical line passing through the cylinder centre, starting from the upper cylinder
surface. For more details on this test computation, see Reference [14].

6. CONCLUDING REMARKS

We provided an overview of the interface-tracking and interface-capturing techniques we
developed for computation of �ow problems with moving boundaries and interfaces. These
techniques rely on stabilized formulations such as the streamline-upwind=Petrov–Galerkin and
pressure-stabilizing=Petrov–Galerkin methods. The interface-tracking techniques are based on
the deforming-spatial-domain=stabilized space–time formulation, where the mesh moves to
track the interface. The interface-capturing techniques, typically used with non-moving meshes,
are based on a stabilized semi-discrete formulation of the Navier–Stokes equations, combined
with a stabilized formulation of an advection equation. The advection equation governs the
time-evolution of an interface function marking the interface location. We highlighted how
we determine the stabilization parameters (‘�’s) used in the stabilized formulations. For the
Navier–Stokes equations and the advection equation, we described the element–matrix-based
and element–vector-based ‘�’s designed for semi-discrete and space–time formulations. These
‘�’ de�nitions are expressed in terms of the ratios of the norms of the relevant matrices or
vectors. They automatically take into account the local length scales, advection �eld and the
element-level Reynolds number. Based on these de�nitions, a ‘�’ can be calculated for each
element, or even for each element node or degree of freedom or element equation. We also
described certain variations and complements of these new ‘�’s, including the approximate
versions that are based on the local length scales for the advection- and di�usion-dominated
limits.
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